

async_generator: Async generators and related tools for older Pythons

	API documentation
	Async generators

	Context managers

	Release history
	1.9 (2018-01-19)

	1.8 (2017-06-17)

	1.7 (2017-05-13)

	1.6 (2017-02-17)

	1.5 (2017-01-15)

	1.4 (2016-12-05)

	1.3 (2016-11-24)

	1.2 (2016-11-14)

	1.1 (2016-11-06)

	1.0 (2016-07-03)

	0.0.1 (2016-05-31)

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

API documentation

Async generators

In Python 3.6+, you can write a native async generator like this:

async def load_json_lines(stream_reader):
 async for line in stream_reader:
 yield json.loads(line)

Here’s the same thing written with this library, which works on Python 3.5+:

from async_generator import async_generator, yield

@async_generator
async def load_json_lines(stream_reader):
 async for line in stream_reader:
 await yield_(json.loads(line))

Basically:

	decorate your function with @async_generator

	replace yield with await yield_()

	replace yield X with await yield_(X)

That’s it!

Yield from

Native async generators don’t support yield from:

Doesn't work!
async def wrap_load_json_lines(stream_reader):
 # This is a SyntaxError
 yield from load_json_lines(stream_reader)

But we do:

from async_generator import async_generator, yield_from_

This works!
@async_generator
async def wrap_load_json_lines(stream_reader):
 await yield_from_(load_json_lines(stream_reader))

You can only use yield_from_ inside an @async_generator
function, BUT the thing you PASS to yield_from_ can be any kind of
async iterator, including native async generators.

Our yield_from_ fully supports the classic yield from
semantics, including forwarding asend and athrow calls into
the delegated async generator, and returning values:

from async_generator import async_generator, yield_, yield_from_

@async_generator
async def agen1():
 await yield_(1)
 await yield_(2)
 return "great!"

@async_generator
async def agen2():
 value = await yield_from_(agen1())
 assert value == "great!"

Introspection

For introspection purposes, we also export the following functions:

	
isasyncgen(agen_obj)

	Returns true if passed either an async generator object created by
this library, or a native Python 3.6+ async generator object.
Analogous to inspect.isasyncgen() [https://docs.python.org/3.7/library/inspect.html#inspect.isasyncgen] in 3.6+.

	
isasyncgenfunction(agen_func)

	Returns true if passed either an async generator function created
by this library, or a native Python 3.6+ async generator function.
Analogous to inspect.isasyncgenfunction() [https://docs.python.org/3.7/library/inspect.html#inspect.isasyncgenfunction] in 3.6+.

Example:

>>> isasyncgenfunction(load_json_lines)
True
>>> gen_object = load_json_lines(asyncio_stream_reader)
>>> isasyncgen(gen_object)
True

In addition, this library’s async generator objects are registered
with the collections.abc.AsyncGenerator abstract base class (if
available):

>>> isinstance(gen_object, collections.abc.AsyncGenerator)
True

Semantics

This library generally tries hard to match the semantics of Python
3.6’s native async generators in every detail (PEP 525 [https://www.python.org/dev/peps/pep-0525/]), except that it adds
yield from support, and it doesn’t currently support the
sys.{get,set}_asyncgen_hooks garbage collection API. There are two
main reasons for this: (a) it doesn’t exist on Python 3.5, and (b)
even on 3.6, only built-in generators are supposed to use that API,
and that’s not us. In any case, you probably shouldn’t be relying on
garbage collection for async generators – see this discussion [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#cleanup-in-generators-and-async-generators]
and PEP 533 [https://www.python.org/dev/peps/pep-0533/] for more
details.

Context managers

As discussed above, you should always explicitly call aclose on
async generators. To make this more convenient, this library also
includes an aclosing async context manager. It acts just like the
closing context manager included in the stdlib contextlib
module, but does await obj.aclose() instead of
obj.close(). Use it like this:

from async_generator import aclosing

async with aclosing(load_json_lines(asyncio_stream_reader)) as agen:
 async for json_obj in agen:
 ...

Or if you want to write your own async context managers, we got you
covered:

	
@asynccontextmanager

	This is a backport of contextlib.asynccontextmanager() [https://docs.python.org/3.7/library/contextlib.html#contextlib.asynccontextmanager], which
wasn’t added to the standard library until Python 3.7.

You can use @asynccontextmanager with either native async
generators, or the ones from this package. If you use it with the ones
from this package, remember that @asynccontextmanager goes on
top of @async_generator:

Correct!
@asynccontextmanager
@async_generator
async def my_async_context_manager():
 ...

This won't work :-(
@async_generator
@asynccontextmanager
async def my_async_context_manager():
 ...

Release history

1.9 (2018-01-19)

	Add asynccontextmanager()

	When a partially-exhausted async_generator is garbage collected,
the warning printed now includes the generator’s name to help you
track it down.

	Move under the auspices of the Trio project
* This includes a license change from MIT → dual MIT+Apache2
* Various changes to project organization to match Trio project standard

1.8 (2017-06-17)

	Implement PEP 479: if a StopAsyncIteration leaks out of an async
generator body, wrap it into a RuntimeError.

	If an async generator was instantiated but never iterated, then we
used to issue a spurious “RuntimeWarning: coroutine ‘…’ was never
awaited” warning. This is now fixed.

	Add PyPy3 to our test matrix.

	100% test coverage.

1.7 (2017-05-13)

	Fix a subtle bug where if you wrapped an async generator using
functools.wraps, then isasyncgenfunction would return True
for the wrapper. This isn’t how inspect.isasyncgenfunction
works, and it broke sphinxcontrib_trio.

1.6 (2017-02-17)

	Add support for async generator introspection attributes
ag_running, ag_code, ag_frame.

	Attempting to re-enter a running async_generator now raises
ValueError, just like for native async generators.

	100% test coverage.

1.5 (2017-01-15)

	Remove (temporarily?) the hacks that let yield_ and
yield_from_ work with native async generators. It turns out that
due to obscure linking issues this was causing the library to be
entirely broken on Python 3.6 on Windows (but not Linux or
MacOS). It’s probably fixable, but needs some fiddling with ctypes
to get the refcounting right, and I couldn’t figure it out in the
time I had available to spend.

So in this version, everything that worked before still works with
@async_generator-style generators, but uniformly, on all
platforms, yield_ and yield_from_ now do not work inside
native-style async generators.

	Now running CI testing on Windows as well as Linux.

	100% test coverage.

1.4 (2016-12-05)

	Allow await yield_() as an shorthand for await yield_(None)
(thanks to Alex Grönholm for the suggestion+patch).

	Small cleanups to setup.py and test infrastructure.

	100% test coverage (now including branch coverage!)

1.3 (2016-11-24)

	Added isasyncgen and isasyncgenfunction.

	On 3.6+, register our async generators with
collections.abc.AsyncGenerator.

	100% test coverage.

1.2 (2016-11-14)

	Rewrote yield from support; now has much more accurate handling
of edge cases.

	yield_from_ now works inside CPython 3.6’s native async
generators.

	Added aclosing context manager; it’s pretty trivial, but if
we’re going to recommend it be used everywhere then it seems polite
to include it.

	100% test coverage.

1.1 (2016-11-06)

	Support for asend/athrow/aclose

	Support for yield from

	Add a __del__ method that complains about improperly cleaned up
async generators.

	Adapt to the change in Python 3.5.2 [https://www.python.org/dev/peps/pep-0492/#api-design-and-implementation-revisions]
where __aiter__ should now be a regular method instead of an
async method.

	Adapt to Python 3.5.2’s pickiness about iterating over
already-exhausted coroutines.

	100% test coverage.

1.0 (2016-07-03)

	Fixes a very nasty and hard-to-hit bug where await yield_(...)
calls could escape out to the top-level coroutine runner and get
lost, if the last trap out to the coroutine runner before the
await yield_(...) caused an exception to be injected.

	Infinitesimally more efficient due to re-using internal
ANextIter objects instead of recreating them on each call to
__anext__.

	100% test coverage.

0.0.1 (2016-05-31)

Initial release.

Index

 A
 | I

A

 	
 	asynccontextmanager() (built-in function)

I

 	
 	isasyncgen() (built-in function)

 	
 	isasyncgenfunction() (built-in function)

 nav.xhtml

 Table of Contents

 		
 async_generator: Async generators and related tools for older Pythons

 		
 API documentation

 		
 Async generators

 		
 Yield from

 		
 Introspection

 		
 Semantics

 		
 Context managers

 		
 Release history

 		
 1.9 (2018-01-19)

 		
 1.8 (2017-06-17)

 		
 1.7 (2017-05-13)

 		
 1.6 (2017-02-17)

 		
 1.5 (2017-01-15)

 		
 1.4 (2016-12-05)

 		
 1.3 (2016-11-24)

 		
 1.2 (2016-11-14)

 		
 1.1 (2016-11-06)

 		
 1.0 (2016-07-03)

 		
 0.0.1 (2016-05-31)

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

